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Abstract
AI technologies are increasingly deployed to support community
health workers (CHWs) in high-stakes healthcare settings, from
malnutrition diagnosis to diabetic retinopathy. Yet, little is known
about how such technologies are understood by CHWs with low
digital literacy and what can be done to make AI more understand-
able for them. This paper examines the potential of explorable
explanations in improving AI understanding for CHWs in rural
India. Explorable explanations integrate visual heuristics and writ-
ten explanations to promote active learning. We conducted semi-
structured interviews with CHWs who interacted with a design
probe in which AI predictions of child malnutrition were accompa-
nied by explorable explanations. Our findings show that explorable
explanations shift CHWs’ AI-related folk theories, help develop
a more nuanced understanding of AI, augment CHWs’ learning
and occupational capabilities, and enhance their ability to contest
AI decisions. We also uncover the effects of CHWs’ sociopolitical
environments on AI understanding and argue for a more holistic
conception of AI explainability that goes beyond cognition and
literacy.
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1 Introduction
Malnutrition accounts for 45% of the deaths among children under
the age of five worldwide [95]. Given its prevalence and dangerous
consequences, a key target of the United Nations Sustainable De-
velopment Goals is to “end all forms of malnutrition by 2030” [123].
Of the three indicators used to measure malnutrition— i.e., stunting
(low height for age), wasting (low weight for height), and under-
weight (low weight for age)—India has one of the highest propor-
tions of stunted and wasted children [52, 124]. To fight malnutrition,
India employs a large network of community health workers who
are trained to provide maternal and neonatal care in hard-to-reach
regions [2, 115]. A crucial component of this network is Anganwadi
Workers (AWWs) who are women recruited from local communities
to provide a number of essential services, such as supplementary
nutrition, preschool education, growth monitoring, immunizations,
and antenatal and postpartum care [2]. While AWWs have been
shown to improvematernal and neonatal outcomes [122], they expe-
rience several challenges including limited training and upskilling
opportunities [132], unpredictable and long work hours [83], and
overburdened schedules resulting from inadequate infrastructure,
workforce shortages, and budgetary cuts [28, 55, 77].

To optimize their operational efficiency, AWWs are increasingly
experiencing occupational digitalization from a variety of for-profit
and not-for-profit organizations aimed at developing AI tools to
automate parts of their work. These tools range from dynamically
designing AWWs’ work schedules [78], to helping them diagnose
diseases such as malnutrition and diabetic retinopathy [15, 19, 56],
to analyzing rapid diagnostic tests [98, 105]. With the burgeoning
integration of AI into AWWs’ workflows, it is critical to ensure that
AWWs understand AI and use these tools safely and responsibly.

The field of explainable AI (XAI), which provides a set of methods
aimed at making AI decisions more understandable and trustwor-
thy to human stakeholders, can provide important design affor-
dances for developing responsible AI-driven systems that assist
AWWs [11, 46, 69]. However, Okolo et al. [92] found that very little
XAI research has been done with users in the Global South who
operate within unique technological, economic, and sociocultural
contexts. Moreover, there are distinctive questions regarding XAI
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for AWWs given the fact that many of these stakeholders are dig-
ital novices (i.e., they have only started to interface with digital
technologies in a significant way within the past decade) [53] and
possess low levels of digital literacy [8]. To date, there is a scarcity of
research investigating AI-related needs and perceptions of AWWs
as well as the benefits and challenges associated with the integra-
tion of AI into their workflows [54, 92, 93]. Little is known about
how AI technologies are understood by AWWs and what can be
done to make AI more understandable for them [92, 93].

In this paper, we examine the potential of explorable explanations
at improving AI understanding for AWWs in rural India. Explorable
explanations incorporate human-centered, interactive visual heuris-
tics and written explanations to promote a more active form of
learning and calibrated trust [41, 61, 67, 127]. Researchers have
argued that XAI methods should be interactive so that explanations
can help facilitate follow-up questions to close the understanding
gap [7, 69, 76, 82]. Along with interactivity, explorable explanations
provide a simple and approachable method for promoting end-
users’ active learning [41] and more deliberative thinking [21, 58].
For these reasons, we studied the role explorable explanations can
play in improving AI understanding for AWWs. To investigate our
approach, we conducted semi-structured interviews with 30 AWWs
who interacted with a design probe in which AI predictions of
child malnutrition were accompanied by explorable explanations.
We chose child malnutrition as our study context given the preva-
lence of the condition in India and the steady increase of AI-driven
anthropometry tools in AWWs’ workflows [1, 15]. Given AWWs
low levels of AI literacy and the fact that XAI is a fairly nascent
field, we decided to used a design probe to help facilitate our re-
search. Design probes have been shown to be particularly effective
in stimulating elaborate user feedback from respondents who lack
technological knowledge and are especially useful when the design
space is amorphous [51, 85, 131].

We built our design probe as a Figma [40] prototype, which
enabled AWWs to interact with an AI-driven child malnutrition
prediction tool accompanied by explorable explanations. The probe
did not run a real machine learning (ML) model to make predictions
but instead was instrumented to mimic how an AI-driven applica-
tion might behave in production. In addition to the Figma prototype,
we also used a physical doll as a proxy for a child with malnutri-
tion. We used the doll and prototype in tandem to emulate the
process of an AWW using an AI-driven application to predict the
nutritional status of a child. In our study, participants began by as-
sessing the nutritional status of the child (doll) and then interacted
with the design probe. They first reviewed the AI prediction, and
then engaged with the explorable explanations, which consisted of
four main components: Feature Information Modals, Edit Measure-
ments Section, Feature Importance Section, and Comparison Screens.
These explorable XAI methods expand on the existing literature on
human-centered XAI, explorable explanations, and inclusive design
for digitally novice users. The design probe allowed us to capture
AWWs’ AI-related folk theories and understanding, in addition to
their critical reflections on the benefits and limitations of these
explorable explanations.

Through thematic analysis of observations and interviews with
AWWs who engaged with the design probe, we found that ex-
plorable explanations shaped the AI-related folk theories of

AWWs and helped them develop amore nuanced understand-
ing of AI. As a result of these shifts in AI-related folk theories and
understanding, we observed that explorable explanations increased
AWWs’ skepticism of AI and enhanced their ability to contest AI
predictions when they perceived the system made mistakes. AWWs
also found explorable explanations to be a useful pedagogical tool
that could augment their domain knowledge and help to collab-
oratively improve their accuracy of diagnosing malnutrition. We
also found that AWWs’ social, political, and economic environment
heavily shaped their notions related to AI adoption and understand-
ing. Based on these findings, we discuss the need for a more holistic
conception of AI explainability that goes beyond cognition and
literacy to consider aspects such as user training and community
engagement as core tenants of explainability efforts. Taken together,
this work makes three contributions to HCI and XAI scholarship:

• We conduct one of the first studies to examine the role ex-
plorable explanations can play in shifting AI-related folk
theories of AI end-users.

• Through qualitative interviews, observations, and engage-
ment with a design probe, we provide empirical evidence
showing that explorable explanations can improve AI under-
standing for AWWs who engage with an AI-driven malnu-
trition prediction application.

• We discuss the need to situate AI interventions and efforts
to improve AI understanding within the sociocultural, so-
ciopolitical, and socioeconomic realities of the context within
which these systems are integrated.

2 Related Work
In this section, we contextualize our work by discussing the pivotal
role played by AWWs as the primary point of contact for millions
of marginalized people in hard-to-reach areas in rural India. We
explore the rationale behind our study by positioning our research
within the realm of AI interventions aimed at supporting commu-
nity health workers (CHWs) and conclude by situating our work in
current scholarship on making AI explainable to novice users.

2.1 AI and Community Health Workers
Anganwadi Workers (AWWs) are an important part of the frontline
workforce of the Integrated Child and Development Services (ICDS),
which is a flagship government program that supports the health
and developmental needs of women and children in rural India.
AWWs’ responsibilities include monitoring children’s nutritional
status, providing antenatal care, administering supplementary nu-
trition, conducting immunizations, and engaging in community
health counseling [122]. Although AWWs’ have a formal role within
the government’s workforce and receive a stipend as opposed to
the incentive based pay that other CHWs receive, their compen-
sation remains far below similar occupations in the country [97].
Despite numerous unionization efforts, AWWs still struggle for
basic bargaining power and continue to receive below-market com-
pensation as well as untimely wage payments [55, 97]. These labor
conditions are critical to holistically understanding the environ-
ment in which these types of AI-driven systems are being deployed
and the subsequent sociotechnical challenges.
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In order to make determinations regarding the nutritional sta-
tus of children, AWWs use a variety of measuring devices such as
infantometers, tape measures, stadiometers, and growth charts as
well as assess behavioral indicators. They do this work primarily by
visiting families at their places of residence or meeting with them
at Anganwadi Centers (AWC), which are generally located in rural
town centers. Although these assessments were previously recorded
in physical registers, the current process has been completely digi-
tized. A number of mobile applications [91] have been introduced
in an effort to increase operational and administrative efficiency.
Our study participants, who are AWWs located in the northern
state of Uttar Pradesh, India use at least four different mobile appli-
cations on a day-to-day basis to complete their work. These devices
include a nutrition data entry application called Poshan Tracker, an
infrastructural needs and requests tracking application called Ek
Sang, an application to interface with supervisors called Sahyog,
and an educational application called Bal Pitara [101].

Given these digitization efforts, there exists a large body of
work within HCI that has examined the use of technologies to
support CHWs in India. For example, researchers have designed
audio-visual tools and mobile applications to improve information
dissemination [64, 103], explored how technologies can improve
CHWs’ workflows and productivity [33, 78], examined data collec-
tion and digitization tools [35, 96], and assessed decision support
systems [34, 35]. Recent HCI scholarship has also studied AI tools
and their use by CHWs in resource-constrained settings. For in-
stance, Ismail and Kumar [54] outline the increasing use of AI
technologies by CHWs in India, which is driven by equipment and
shortages of medical personnel. Several projects also aim to im-
prove child and maternal health using anthropometric tools for
monitoring nutritional indicators [15, 19, 25]. Others have looked
at AI-powered risk assessments related to obstetrics [117] and early
detection of prevalent diseases, such as breast cancer [104], diabetic
retinopathy [56] and tuberculosis [80]. The COVID-19 pandemic
also spurred the development of AI-based tools to help CHWs to
perform contact tracing and diagnosis [98, 105].

However, a growing number of studies have underscored the
challenges posed by digital and AI systems on CHW workflows.
Researchers have highlighted that these applications do not capture
the invisible work done by CHWs and disregard their domain ex-
pertise by reducing them to mere data collectors [111, 126]. Often,
the care work takes a backseat and data work becomes an end in
itself, given the sheer amount of energy related to data collection
and the coercive environment in which CHWs operate [96, 109].
While a study regarding the effectiveness of such digitization tools
in large-scale public health programs has yet to be seen, recent
research has begun to identify some of the potential harms and
challenges concerning these systems including patient misdiag-
noses, hyper-surveillance of CHWs, infrastructural mismatches,
increases in invisible labor for CHWs, and the obfuscation of CHW
concerns [53, 109, 126]. Subsequently, researchers have called for a
strong human-centered understanding of CHWs’ needs and desires,
advocating for co-designing tools with CHWs in order to incorpo-
rate their domain expertise into these systems [9, 54, 65, 93, 99].
Even prominent global health foundations, policy think tanks, and
government institutions, who otherwise promote the widespread
use of AI-driven technologies [5, 42, 94], have called for a more

responsible use of AI citing issues related to direct harm, trans-
parency, inclusion, and evaluation [6, 94]. Through our research,
we add to this body of work by expanding the limited literature
on the understanding of AI-driven systems by novice users such
as CHWs and brings the perspectives of these frontline workers in
the Global South to a field dominated by the viewpoints of those in
the Global North [71, 92].

The proliferation of AI-driven applications in community health
work calls for a serious inquiry into AI literacy for low-digitally
literate users like AWWs, who are both the primary users and one
of the most directly affected stakeholders of these systems. Long
and Magerko [74] define AI literacy as “a set of competencies that
enables individuals to critically evaluate AI technologies; communi-
cate and collaborate effectively with AI; and use AI as a tool online,
at home, and in the workplace”. They see digital literacy, i.e., the
competency needed to use computational devices, as a prerequisite
but do not find computational literacy (i.e., the ability to program
and understand the internal mechanics of a computer) necessary
for AI literacy. The authors underscore several design considera-
tions, including developing XAI tools and the implementation of
“low barrier to entry” approaches as effective ways to increase AI
literacy [74]. In this paper, we extend these recommendations by
exploring interactive, human-centered approaches for developing
XAI methods that focus on increasing AI literacy for AWWs who
are digital novice users with low AI know-how.

2.2 Human-Centered Explainable AI
XAI refers to the set of methods and techniques to make AI deci-
sions more understandable to human users [11, 46, 69]. While the
term explainability is used by the research community with varying
scope, for the purpose of this research, we are focusing on XAI that
allows stakeholders to understand and calibrate appropriate trust
in the results of machine learning (ML) algorithms. Typically de-
fined as post-hoc explainability, three of the most popular methods
include LIME [107], SHAP [75], and SAGE [31]. These approaches
are generally divided into three categories: local, cohort, and global
explainability. Local explainability is used to explain individual
predictions, cohort is used to understand predictions over a subset
of data, and global explains the model’s behavior across the whole
dataset [11, 69]. Although our work generates inspiration from all
three approaches, we focus predominantly on local explainability as
these techniques are typically the most relevant for end users [14].

Given the increasing prevalence of AI-driven systems that are
responsible for high-stakes decisions in critical domains such as
healthcare [57, 79, 134], AI researchers have sought to better explain
these systems to human stakeholders [45, 73], highlighting issues
around cognitive overload, non-comprehensibility of explanations,
and excessive reliance on AI. Despite these efforts, the discourse
around XAI has predominantly focused on algorithm-centered ap-
proaches, which may not fully address the diversity of AI literacy
levels, the concerns from end users, and may exacerbate issues of
algorithmic opacity [39]. As a result, XAI researchers have begun
to emphasize the importance of developing human-centered ap-
proaches that center the technical development of XAI methods on
people’s explainability needs [38, 39, 70, 130]. In 2020, Ehsan and
Riedl [38] introduced “Human-centered Explainable AI” (HCXAI),
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a framework that prioritizes human considerations and advocates
developing a holistic understanding of diverse stakeholders, con-
sidering the “interplay of values, interpersonal dynamics, and the
socially situated nature of AI systems” [38]. Liao and Varshney [70]
further highlight centering XAI design on individual stakeholders
moving away from one-size-fits-all solutions, challenging techno-
centric assumptions, and drawing insights from theories on human
cognition and behavior [70, 130].

Despite AI rapidly becoming an integral part of people’s daily
lives all around the globe, current scholarship onmaking AI explain-
able focuses mainly on communities and contexts in the Global
North. A systematic literature review conducted by Okolo et al.
[92] identified that only 0.08% of approximately 18,000 articles pub-
lished on XAI focused on contexts in the Global South, despite
the region housing two-thirds of the global population [100]. Lit-
tle is known about their needs, workflows, and contexts within
which XAI methods must be designed, deployed, and tested. This
is particularly concerning given the growing interest from govern-
ments, companies, and academics in using AI/ML in high-stakes
and sensitive domains. Our study contributes to the emerging lit-
erature by centering the perspectives of AWWs and investigating
design heuristics that increase their understanding of AI. In the
next section, we delve into capturing AWWs’ mental models of AI
through folk theories, which is our method of choice for assessing
AI understanding in the study.

2.2.1 AI Folk Theories and Mental Models Researchers have found
value in eliciting users’ mental models to examine their percep-
tions of AI explainability methods [44, 63, 108]. Mental models are
a concept drawn from cognitive psychology, which are “people’s
continuously evolving cognitive representations of a system that incor-
porate their beliefs regarding the way the system works” [60]. These
are different from conceptual models which are a more accurate
and complete representation of the target system and are devel-
oped by experts or designers [89]. Given the variability in users’
understanding of an AI system, researchers use methods of varying
complexity to elicit these mental models. These range from intricate
written explanations tailored for users with high system knowledge
[63] to more accessible think-aloud activities used while playing
games that involve the system [44].

For digitally novice users, like AWWs, who would have trouble
articulating conceptual models of the system, providing avenues
for folk theorization which are “intuitive, informal theories that in-
dividuals develop to explain the outcomes, effects, or consequences of
technological systems” [36] is a more suitable approach. Since mental
models rely heavily on participants’ prior experiences and envi-
ronmental factors, it is unclear whether existing methods, which
have either focused on users with some level of familiarity with
AI systems or have predominantly been conducted in the Global
North, are appropriate for users from other demographics.

2.2.2 Explorable Explanations The term “explorable explanation”
was first introduced in a 1994 paper by Brusilovsky [20] but it did
not become commonly used until 2011 when Victor [127] published
an eponymous essay on the subject. Victor [127] situates explorable
explanations in the context of “active reading” of static documents,
where he encourages design affordances that can empower readers
to interact with and modify content, enabling them to question,

explore and verify the presented information [127]. Importantly,
explorable explanations contain interactive elements combined
with static graphics, relying heavily on the importance of “play”
as a learning didactic [41, 87]. They encourage users to discover
things about concepts for themselves and test their expectations of
its behavior against its actual behavior, promoting a more active
form of learning [41]. In fact, several researchers have previously
argued that XAI methods should be interactive so that explana-
tions can help facilitate follow-up questions from users to close the
understanding gap [7, 69, 76, 82].

In addition to interactivity, another advantage of explorable
explanations is the simplicity and synchronous feedback of the
approach. While other post-hoc explainability methods rely heavily
on end-user mathematical and computational literacy [31, 75, 107],
explorable explanations, as aforementioned, are grounded in “play”
as an intuition building mechanism. As a result, explorable ex-
planations have the potential to be more appropriate for users
who possess limited digital and AI literacy. Additionally, the ac-
tive learning component of explorable explanations requires users
to thoughtfully interact with the prediction explanations, which
subsequently helps them engage in System 2 (slow and delibera-
tive) thinking [58]. Researchers such as Buçinca et al. [21], have
advocated for AI explanations that require people to exert effort
(deliberative thinking) to build AI understanding.

HCI researchers have been increasingly incorporating explorable
explanations through Augmented Reality, audio guides, and inter-
active visualizations in the areas of data journalism [29, 30, 66, 67],
education [27, 88] and programming [129]. These studies show that
explorable explanations helped convert static and prescriptive me-
dia into knowledge creation tools, reduced cognitive overload and
task-related stress among participants, and improved conceptual
clarity of the target systems. Recently, researchers have started to
implement explorable explanations as a way of teaching ML con-
cepts to students and developers through visual analytics [49, 59]
and output exploration [68, 110]. For example, TensorFlow Play-
ground [118], a visual web application, is a popular tool that allows
users to directly manipulate neural networks and build their intu-
itions about how they work.

To date, the work on explorable explanations has focused mostly
on users in the West with computational literacy, such as students
and software developers. Little is known about: (1) whether ex-
plorable explanations can improve AI understanding and (2) how
well these explanations work for users with limited digital literacy
and AI knowledge in the Global South. Our work extends the cur-
rent scholarship on explorable explanations and human-centered
XAI by examining the following research question: Do explorable
explanations improve AI understanding for AWWs in rural India?

3 Methodology
We first present the design probe that we used to elicit AI folk
theories of AWWs and then describe the design of the explorable
explanations integrated within the probe to make the inner work-
ings of AI more understandable to AWWs. Next, we present our
study protocol, the demographic data of the 30 AWWs who partici-
pated in our research activities, the analysis we conducted on the
collected data, and our author positionality statement.
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3.1 Probe Design
Many HCI researchers have used design provocations and cultural
probes to stimulate user feedback and discussions [17, 43, 51, 128].
These methods have proven to be valuable when working with
participants to critically and concretely evaluate the design utility of
technologies in real-world settings, such as community healthcare
work [85]. More recently, researchers studying AI have begun to use
design probes to gain insights into how to develop XAI systems for
key stakeholders [48, 106, 121, 135]. Given the limited familiarity
of AWWs with AI generally and XAI tools specifically, we designed
a probe in Figma to enable AWWs to engage with an AI-driven
tool to detect child malnutrition, where the AI system’s predictions
were accompanied by explorable explanations (discussed in detail
below).

We selected child malnutrition as our focus for three main rea-
sons. Firstly, numerous organizations are already actively develop-
ing and deploying AI-driven systems to identify malnutrition in
the Global South. One such initiative, the “Child Growth Monitor
Project” byWelthungerhilfe and Microsoft [1], served as inspiration
for our design probe. This not only ensured that our study was
grounded in a real-world AI application developed for AWWs in
the Global South, it also allowed us to begin to understand some of
AWWs’ perspectives regarding the utility and appropriateness of
these tools. Secondly, the concise visual indicators used to detect
malnutrition make it well-suited for explorable explanations. Un-
like many other common diseases, malnutrition attributes, such as
height or weight, are visually apparent, aligning effectively with
the visualizations and XAI techniques emphasized in our design
exploration. Lastly, childhood malnutrition is prevalent in India
and the government has prioritized it as a national health concern.
Addressing malnutrition is a primary responsibility of AWWs, mak-
ing it a crucial context for investigating AI-driven applications for
community healthcare in the Global South. While we based our
probe on the existing AI-driven malnutrition applications, more
research is necessary to understand whether these tools are actu-
ally useful for AWWs especially given that AWWs are critically
underrepresented in the design, development, and implementation
of these AI-driven systems.

Our design probe represented two narrative directions, one
where the probe classified the child as malnourished and the other
where the child was classified as normal. We also used child body
measurements and growth charts from online resources published
by the World Health Organization (WHO) [4] and used the WHO’s
definition of malnutrition, which defines the condition as “deficien-
cies or excesses in nutrient intake, imbalance of essential nutrients, or
impaired nutrient utilization” [3]. The probe without explorable ex-
planations consisted of three screens: a launch screen, photo upload
screen, and AI prediction screen (see Figure 4b). The probe did not
run an actual machine learning (ML) model to make predictions.
Instead, it was instrumented to mimic how an AI-driven application
might behave in production. The prototype was accompanied by
a set of pre-selected child photos (photos of three different dolls)
and outputted predefined predictions accompanied by explorable
explanations. Next, present the design of explorable explanations,
which participants could interact with to test their expectations of

the AI behavior and to understand the inner workings of the AI
prediction.

3.2 Design of Explorable Explanations
The explorable explanations consisted of four key design elements:
Feature Information Modals, Edit Measurements Section, Feature Im-
portance Section, and Comparison Screens. Each of these interfaces
incorporated important design heuristics and affordances, which
are grounded in the HCI and XAI literature, as is discussed below.

3.2.1 Feature InformationModals The feature informationalmodals
explained the model features for the child and contextualized the
corresponding featuremeasurement. As can be seen in Figure 2a, we
overlaid clickable buttons on the child’s photo, which corresponded
to the different AI model features. Once a button was clicked, the
modal overlay was triggered (see Figure 1a). The model contained
informational content that was relevant to the specific features
including: a textual overview, illustration of how the measurement
was taken, and feature measurement chart indicating the various
outcome thresholds. This design leveraged findings from Simkute
et al. [116], which encourages the “ability to expand information
and see ‘noise’ in the data” to better support explainability mecha-
nisms for medical experts.

Researchers have also emphasized the value of data visualizations
for AI explainability and transparency methods [12]. Initially, we
designed this user interface (UI) element to incorporate a scatter-
plot diagram of the global feature measurements and corresponding
child predictions, which was inspired by SAGE [31], a post-hoc
explainability method for explaining the model’s behavior across
the entire dataset. However, in our pilot study, we observed that
the plot confused participants who were not familiar with reading
mathematical diagrams. In an effort to “meet people where they
are” and adopt a culturally responsive design that uses familiar
graphics [119], we iterated on the design and provided AWWs with
a feature measurement chart that no longer captured global feature
data but provided local explanations, which are more useful for end
users [14].

3.2.2 Edit Measurements Section Prior work on XAI argues that ex-
planations should help facilitate follow-up what-if style questions
by users to close the understanding gap [7, 69, 76, 82]. Building on
prior work on explorable explanations [41, 67, 127], we incorpo-
rated the ability of AWWs to modify the AI model measurements
and see how the changes influenced the AI prediction (see Fig-
ure 1b). For example, if a participant modified the child’s height,
this change was reflected in the prototype by altering the outline
of the child’s photo and the value in the Feature Importance Section
(see Section 3.2.3). Based on the modification to the measurement,
the change would also affect the confidence and prediction of the
model.

In the prototype, model confidence was designed as a UI slider,
which communicated the probability that the AI prediction was
correct. The work of Miller [82] found that probabilities or sta-
tistical relationships seem to not matter unless accompanied by
causal explanations. As a result, we used color and UI interactivity
in the design probe to connect the relationships between the model
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(a) Explorable Explanations Feature Information Modal. (b) Explorable Explanations Edit Measurements Section.

Figure 1: (a) The Feature Information Modal is showing the child’s head circumference feature. At the top of the modal, in
large dark blue text is the modal header ("head circumference") followed by a textual overview of the head circumference
feature. The overview text color is primarily gray, with yellow and red colors highlighting different keywords and phrases.
The first paragraph states that the child is three-weeks and four-days-old (displayed in bold-ed gray text) and has a head
circumference measuring 35.1 centimeters (represented in yellow text). The information also states that the head circumference
falls within the moderate range (shown in yellow text). In the second paragraph, the text cautions the user that despite the head
circumference falling within the moderate range, the overall prediction for the child is severely malnourished (indicated by
the red text). To the right of the header and overview text is a diagram illustrating how the head circumference measurement is
taken. The diagram shows a cropped portrait image of the child with a dashed yellow line around the child’s head, indicating
where the head circumference measurement is taken. Below both the textual overview and illustration is a head circumference
measurement chart, which shows the various outcome thresholds as displayed in red, yellow, and green color bands. The
marker on the graph communicates the same measurement as is in the text (35.1 centimeters) and indicates where the marker
falls in the malnutrition severity level bands (bottom yellow band). (b) The Edit Measurements Section is split into two panels.
On the left hand side is a photo of the child with a red outline and measurement stick that corresponds to the modified height
of the child. On the right side is the AI prediction panel and interactive heuristics. The right panel contains the AI prediction,
confidence slider, textual overview, list of the model features, audio player, and modifiable measurement inputs. The design
displays the overall prediction in a red colored pill-shaped icon, which indicates that the child is severely malnourished. The
text overview lists that the height and upper-arm circumference are in the normal range (indicated by the green text) and
oedema, weight, and head circumference in the severe range (indicated by the red text). At the bottom of the right panel are the
editable input fields for each measurement: age, height, weight, oedema, upper-arm circumference, and head circumference.

features (measurements) and the confidence slider. We chose per-
centages to communicate confidence probabilities, as this approach
is supported by the literature on inclusive design for low-literate
users, which emphasizes the use of numerical knowledge [119]. In
general, these playful interactive design affordances encouraged
AWWs to discover AI properties and behaviors themselves and
test their expectations of the systems’ behavior against its actual
behavior, promoting a more active form of learning.

3.2.3 Feature Importance Section LIME [107], SHAP [75], and SAGE [31]
are three of the most popular post-hoc explainability methods used
to explain the output of ML models. LIME and SHAP work sim-
ilarly in that they both explain individual predictions (local in-
terpretability), while SAGE explains the model’s behavior across
the entire dataset (global interpretability). All three of these tools
use visualizations to try and explain “black-box” models to users.

While these methods have been widely adopted by the XAI com-
munity [10, 23, 50], given our understanding of AWWs and their
limited levels of AI literacy, we felt that the current methods would
not resonate with AWWs.

Prior work in XAI and HCI4D advocates for presenting compre-
hensive evidence but in a concise manner [13, 69, 119, 133]. We
therefore simplified the local feature explanation by listing the
model features under two explicit categories: “positive” and “nega-
tive” (see Figure 2a). The categories represented whether the feature
was associated with the positive (normal) or negative (severely mal-
nourished) prediction outcome. We also built an audio feature into
the probe that verbally explained the model prediction and feature
importance to AWWs with limited reading skills [119].

Initially, the features were accompanied by icons, a green check
mark and a red cross symbol for positive and negative features,
respectively. We also listed the feature name along with the current
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(a) Explorable Explanations Feature Importance Section. (b) Explorable Explanations Comparison Screens.

Figure 2: (a) The Feature Importance Section is part of the AI prediction panel and displays local feature explanations by listing
the model features under two explicit categories: “positive” and “negative”. Under each category are the corresponding feature
names as described in 1b along with their distances from the normal measurement range. For example, the text representing
weight says, “The weight is 1.04 kg less than normal.” (b) The Comparison Screens contain two different children, along with their
prediction outcomes, ages, feature contributions, and model confidence measures. The left panel contains the “Current Child”,
which is three-weeks and four-days-old and is classified as severely malnourished (indicated by the red colored pill-shaped
icon). The feature importance sections list height and upper-arm circumference in the normal range (indicated by the green
text) and oedema, weight, and head circumference in the severe range (indicated by the red text). The right panel contains the
“Similar Child”, which is also categorized as “severely malnourished” and is exactly three-weeks-old. However, the “Similar
Child” only has upper-arm circumference listed in the normal range (indicated by the green text) and has oedema, weight,
head circumference, and height all listed in the severe range (indicated by the red text).

feature measurement or observation. Later, we iterated on the de-
signs since during our pilot study we noticed that the iconography
was confusing to AWWs. We thus removed the icons in favor of
colored text and bullet points, with green representing positive
and red representing negative features. Lastly, we changed the lists
to contain the feature names along with their distances from the
normal measurement range (e.g., Height is 2 cm less than normal).

3.2.4 Comparison Screens Miller [82] shows that explanations are
contrastive. People explain the cause of an event more effectively
relative to some other event. Similarly, Cramer et al. [32] show
that algorithmic explanations that compare the likeness of similar
predictions are the most compelling in justifying predictive systems.
Building on these findings, we designed an interface that allowed
AWWs to compare the current child to other similarly predicted
children (see Figure 2b) and contrast their prediction outcomes, ages,
feature contributions, andmodel confidence. The goal of this feature
was to help AWWs build intuition and a relative understanding of
nutritional status classifications.

3.3 Study Protocol
We conducted a qualitative study with 30 AWWs in rural regions in
Uttar Pradesh, India. To recruit AWWs, we partnered with a grass-
roots organization focused on community healthcare initiatives. An
organization staff member reached out to AWWs who participate

in program activities and described the study to them. We then
scheduled interviews with AWWs interested in participating in
our research. All interviews and observations took place in-person
at various locations in the field to make it easier for AWWs to
participate. We continued recruiting participants until we reached
theoretical saturation in our findings [113].

Our study began with a brief introduction of our research, fol-
lowed by an informed consent process in which we requested par-
ticipants’ verbal consent. We then proceeded with a semi-structured
interview activity, which was interlaced with the design probe that
participants interacted with. All study activities were conducted
in Hindi and recorded for research purposes. An author fluent in
Hindi led the interviews, while another who was not fluent in Hindi
took detailed observational notes and photos when participants
interacted with the probe. The study protocol consisted of five key
steps (Figure 3). First, AWWs assessed the nutritional status of a
child (doll). They then engaged with the design probe that predicted
the nutrition status of the child (doll) and compared it with their
own assessment. We then captured AWWs’ AI-related folk theo-
ries and sentiments regarding system trust and agreement. Next,
AWWs interacted with explorable explanations. We then recaptured
AWWs’ folk theories and sentiments regarding system trust and
agreement. Below we discuss these steps in more detail.
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Figure 3: Research study protocol.

3.3.1 Step 1: Malnutrition Assessment via Doll The interview be-
gan by asking demographic and experiential questions with the
goal of understanding AWWs’ age, educational levels, technologi-
cal aptitude, and their occupational complexities and experience
in diagnosing malnourished children. We then used a physical doll
as a proxy for a child with malnutrition. Since using an actual mal-
nourished child would have been irresponsible and dangerous, we
used the doll and prototype in tandem to emulate the process of
using an AI-driven application to predict the nutritional status of
children. To make this process as realistic as possible, we specifi-
cally chose a doll (based on its size and physical features) that best
represented a child whose nutritional status was ambiguous; we
expected AWWs to classify the doll as either normal or malnour-
ished based on their personal assessments. The doll we used was
an anatomically correct, lifelike silicone vinyl doll, measuring 19
inches and representing a three-week and four-day-old baby girl
(see Figure 4a). In the first step, the AWWs manually inspected
the doll and classified its nutritional status based on the protocols
they follow in the field. Throughout the study, we used two dolls
as visual probes. For the first 10 interviews we used a doll, which
elicited mostly malnourished assessment responses from AWWs
due to its stature, posture, and facial expression. As a result, for the
next 20 interviews, we used a different doll, which received more
varied nutritional assessment responses from AWWs.

3.3.2 Step 2: Use Design Probe to Predict Malnutrition We next
asked participants about their familiarity with AI. Based on the
AWWs’ familiarity (or lack thereof), we provided a brief explanation
of AI and some examples of familiar technologies that use AI. This
information was in preparation for our next task, in which AWWs
used the design probe to predict child malnutrition. The objective
was to use the probe as a starting point to help establish a common
understanding of what an AI-driven application to predict child
malnutrition might look like. We chose to display the prototype
on an iPad in contrast to a smartphone because of its larger form
factor and subsequent ease of use. Based on AWWs’ assessments of
malnutrition, we showed them an AI prediction that either agreed
or disagreed with their initial assessment with the goal of balancing
both groups. Since we could not predetermine AWWs’ initial as-
sessments, we kept count of both the assessments made by AWWs
and predictions shown. We alternated the predictions as necessary
in each sequential interview to balance the two groups. At the end
of our study, 16 AWWs saw an AI prediction that was different
from their assessment and 14 AWWs saw an AI prediction that was
the same as their assessment. We asked the AWWs to interact with
the probe and think-aloud [24]. We also provided clarifications and
assistance when appropriate. After interacting with the prototype,
we asked the AWWs to explain the utility and functionality of the
probe in their own words. We also captured AWWs’ AI trust and

agreement with the AI prediction by asking three structured ques-
tions to examine participant changes before and after interacting
with the explorable explanations:

(1) Do you agree or disagree with the prediction shown here?
Why?

(2) Do you trust this AI’s prediction? Why?
(3) What prediction do you want to log-in the system? Your

initial prediction or the AI’s prediction?

3.3.3 Step 3: Capturing AI Folk Theories We then conducted activi-
ties to capture AWWs’ folk theories around how the AI model in the
probe predicts malnutrition [36]. We asked participants to imagine
they had been selected to train their colleagues using the probe
and asked them to verbally communicate how they would explain
the system to the colleague. They were asked to include details
about how they thought the system makes its predictions based on
a photo and what constitutes the system’s main components. We
also asked them to describe how they would inform their colleagues
about integrating the application into their existing workflows and
how they were expected to use it. Lastly, we asked them to convey
to their colleagues the strengths and potential harms of the system
and any changes they would like to make.

The folk theories elicitation activity was a significant departure
from what we had preliminarily envisioned. At the beginning, our
goal was to capture folk theories using two subjective tasks: a draw-
ing andwriting activity as is used in several prior works [36, 60, 120].
However, participants constantly requested to skip these activities
in favor of verbally communicating their thoughts due to a few dif-
ferent factors. Some AWWs had limited literacy levels and therefore,
found writing particularly difficult. Drawing, on the other hand,
was fairly unusual for many participants and subsequently was
met with hesitation. For both activities, the concept of “blank page
syndrome”—the mental block and anxiety of developing writing or
drawing from an empty “base” state—invoked a level of intimida-
tion [102]. AWWs’ ingrained deference to authority also played a
part in their reluctance to participate. Despite our continued efforts
to reassure them that these activities were not a test and that we
were not governmental officials monitoring them in any way, many
AWWs felt that these activities were aimed at evaluating them
and thus were extremely reluctant to engage in tasks that gener-
ated artifacts. Before modifying our assessment methods, only one
participant perfunctorily completed both the drawing and writing
activities. As a result, we decided to capture AWWs’ AI folk theories
qualitatively through verbal explanations.

3.3.4 Step 4: Engagement with Explorable Explanations After cap-
turing AWWs’ initial folk theories, we presented the explorable
explanations prototype, which included a variety of interactive
simulations and design heuristics by drawing on established best
practices [41, 61, 67, 74, 127]. We nudged the participants to engage
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(a) (b)

Figure 4: (a) A participant evaluating the doll probe in order to make their initial nutritional assessment (Step 1). (b) The
AI prediction screen in the prototype. On the left is a photo of the child (doll) and on the right is a textual overview, the AI
prediction, model confidence, and feature measurements (Step 2) as was described in Figure 1.

with the explorable explanations and asked them to think-aloud
and explain the interactions. We also asked AWWs a series of prob-
ing questions at key inflection points to elicit responses regarding
the visual design elements, their confusion, their expectations of
the prototype, their AI understanding, and their trust in the AI
prediction. When necessary, we helped participants navigate the
probe.

3.3.5 Step 5: Re-capturing AI Folk Theories Lastly, we asked partic-
ipants several questions about their initial responses to the verbal
elicitation prompts, in order to recapture their AI folk theories.
For example, we asked participants whether there were any clari-
fications they would like to make to their initial statements after
interacting with the explorable explanations. We also re-asked the
same three questions regarding AI trust and agreement (see Sec-
tion 3.3.2).

3.4 Participant Demographics
Table 1 shows the demographic information for 30 AWWs who
participated in our study. All were women who provide maternal
and neonatal care in their communities. They ranged in age from 32
to 60 years old, and on average had 20 years of experience working
as an AWW. Eight participants had completed high school, 12 had
a bachelor’s degree, and 10 had a master’s degree. All participants
owned and used a smartphone, at least for work purposes, but
nearly half (47%) expressed the need for some assistance when
using them. Furthermore, despite the fact that AI applications are

increasingly integrated into AWW workflows, most participants
(93%) had no prior knowledge or experience with AI.

3.5 Data Collection and Analysis
We collected approximately 24 hours of audio data, 1,110 pho-
tographs of participant interactions, and 75 pages of detailed notes.
The audio recordings were translated into English and transcribed.
To analyze the data, we used inductive thematic analysis [18]. Two
of us engaged in open coding of the transcripts. We first coded one
interview together, generating a baseline set of codes. Next, we
chose a different interview to code separately and met to organize,
reconcile, and merge coding conflicts. We repeated this process for
six more documents, at which point the codebook had stabilized.
Subsequently, we separately coded the remaining 22 interviews,
meeting regularly to discuss code additions, disagreements, ambigu-
ities, and to iteratively refine the codes. Prolonged engagement with
the data helped us establish credibility and reduce coding biases.
This process resulted in a total of 219 codes. We then performed
affinity diagramming to synthesize the codes into three high-level
themes that shape the findings.

3.6 Positionality
Our mixed-gender team has four members, three from countries
in the Global South. Three authors have a long history of working
with CHWs and one author has worked with our partner organi-
zation for over a decade. Haraway [47] in her seminal work states
that knowledge is shaped from a positional perspective and must be
understood as being situated within a particular context. Haraway
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Table 1: Demographic details of study participants (N=30).

Demographic attribute Participant demographics

Age (years) min: 32, max: 60, avg: 46.5, sd: 7.3
Education high school: 8, bachelors: 12, masters: 10
AWW experience (years) min: 12, max: 32, avg: 20.6, sd: 6
Number of children in their care min: 18, max: 168, avg: 82.4, sd: 35.1
Children diagnosed malnourished (last month) min: 0, max: 5, avg: 1.8, sd: 1.5
Device ownership feature phone: 1, smartphone: 30, tablet: 1, computer: 0
Smartphone ownership (years) min: 0.5, max: 15, avg: 4.8, sd: 3.1
Need tech assistance no: 16, yes: 14
Prior AI knowledge no: 28, yes: 2
Apps frequently used work apps: 30, YouTube: 26, WhatsApp: 24,

Amazon: 5, Facebook: 5

[47] calls for recognizing the influence of power dynamics as es-
sential to produce more inclusive and socially relevant knowledge.
Although we rely heavily on the cultural and language proficiency
of our team and the partner organization, our gender, education,
socioeconomic status, and urbanity placed us in an uneven power
dynamic with our participants who were all low-income women
working within a patriarchal system in rural India. Two male re-
searchers (one Hindi-speaking Indian and one Latinx American)
conducted the fieldwork. Given the gender differences between the
researchers and participants, we tried to alleviate AWWs’ hesita-
tions by conducting our research in a room with the doors open
and in the presence of a female staff member who had a longstand-
ing relationship with the participants. However, some AWWs still
showed mild signs of discomfort and took additional time to accli-
mate and speak openly. Due to the authors’ different lived realities
and power differentials, our work is only able to partially capture
the perspectives of AWWs [47].

4 Findings
In this section, we illustrate how our analysis revealed that ex-
plorable explanations shifted AWWs’ AI-related folk theo-
ries and helped them develop amore nuanced understanding
of AI . In Section 4.1, we discuss how AWWs’ assumptions about
AI mimicking their processes changed and how explorable expla-
nations improved their understanding of the inner workings of
AI. In Section 4.2, we show how explorable explanations enabled
AWWs to contest AI predictions and increased their skepticism
in AI predictions, but struggled to improve AWWs’ understand-
ing of ML model confidence. In Section 4.3, we discuss AWWs’
desire to use the explorable explanations for improved learning
outcomes and improving their understanding of borderline cases
of malnutrition.

4.1 Impact of Explorable Explanations on
Shaping AI-Related Folk Theories

4.1.1 AI Works Differently Than AWWs Initially, after observing
the baseline prototype, AWWs had a hard time expressing their

thoughts about how the AI-driven system worked. Participants gen-
erally stated that the AI was estimating the child’s measurements
by looking at the severity levels of malnutrition but they were un-
sure how exactly the system was operating. AWWs who did try to
articulate their thoughts regarding the baseline prototype tended to
describe folk theories that were projections of their own protocols
and procedures, often anthropomorphizing the AI in the process.
For example, P1 thought that the AI must have accompanied an-
other AWW going house-to-house taking analog measurements
and making assessments. Others, such as P26, made analogies:

“Like our madam (referring to their supervisor who is
an auxiliary nurse midwife) can just look at a baby
and tell, it’s also predicting by looking at the baby. We,
however, only say anything after we have measured the
baby. I think it’s using the same formula as us.”

After interacting with the explorable explanations, AWWs’ AI-
related folk theories and understanding shifted. Although most
participants still had trouble articulating the mechanisms behind
the AI prediction, many recognized that the AI’s processes were
different from their own. For example, P29 said “I don’t completely
understand how it is doing these classifications. I think it does things
a bit differently from what we generally do”. However, for some
AWWs certain explorable explanations helped them develop nu-
anced understandings about the AI. A concise, pared-down inter-
face with interactive explanations incorporated into both the Edit
Measurements Section (Section 3.2.2) and Feature Importance Sec-
tion (Section 3.2.3) allowed AWWs to “play” with the prototype
and test their expectations of the AI’s behavior against its actual
behavior. For example, P18 was able to understand how the positive
and negative indicators displayed in the Feature Importance Section
contribute to the overall AI prediction. After interacting with the
Edit Measurements Section and toggling back-and-forth the child’s
measurements to witness the changing predictions, P18 said:

“The AI is not just looking at weight or height in isola-
tion and making a prediction. It is seeing if a couple of
indicators are in the red (contributing towards a mal-
nourished prediction) and then classifying them [the
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child]. It’s not what we do but I think that’s how this
app works.”

Many AWWs expressed similar sentiments to P18. In addition,
the Feature Information Modals (Figure 1a) communicated in simple,
colloquial terms to participants how and why feature contributions
differed (or did not) from the overall prediction. These expandable
elements supported a more granular understanding of the system
functionality and helped AWWs internalize the differences between
their and the system’s processes. As, P29 stated:

“It helped me go back and forth between the weight
and mid-upper arm circumference (MUAC). Since I’d
noticed that the weight was a bit lower than expected
for a 3 week old baby, I could reason why the MUAC
was smaller despite height-weight being in the normal
ranges. The charts were also helpful since I use them
regularly.”

4.1.2 Improved Understanding of the “AI Prediction” The explorable
explanations changed AWWs understanding of what constitutes
an AI “prediction” and shifted their perceptions that were built on
pre-existing knowledge of other digital technologies. We found that
before interacting with the explorable explanations, many AWWs
struggled to understand that the AI system is making a predic-
tion, which could be wrong, instead of giving a definite diagnosis.
After interacting with the explorable explanations, many partic-
ipants were able to recognize the conceptual difference between
an algorithmic prediction and analog measurements. This shift
resulted from editing the measurements, during which the partic-
ipants observed changes in the malnutrition prediction. The Edit
Measurements Section interface enabled a certain amount of data flu-
idity, which challenged AWWs to think critically about what these
interface changes reflected and how the system could be working.
These data mutations meant that participants tacitly understood
that the system prediction had to be an estimation rather than a
ground truth, since the outcomes dynamically updated based on the
underlying data changes. Some participants such as P26 were able
to intellectualize the concept of a prediction more illustratively and
spoke to their perceived limitations of the tool’s abilities saying:

“...this app is also measuring and giving us the predic-
tion. How can it say anything about the child without
measuring it? It must have gone to various villages
and measured various babies and come up with its own
charts. No one can come up with predictions without
doing any practicals. No one is so intelligent to just look
at something and give correct predictions.”

Participants also witnessed unexpected predictive classifications
whenmanipulating themeasurement values. Because the explorable
explanations did not follow rigid classification protocols that par-
ticipants were familiar with, AWWs began to intuit that the system
must be predicting classifications based on past data. For example,
participants initially expected that the AI would make classifica-
tions based on the strict guidelines they use for weight and height,
but when editing the measurements (Edit Measurements Section)
they noticed this was not always the case—sometimes the AI sys-
tem behaved differently than their expectations. The Comparison
Screens also displayed different measurements and classifications

per child, which added to AWWs’ understanding that the system
was not following one specific protocol and thus it must be making
informed guesses using past malnutrition data. As, P18 said:

“Like I’d said earlier, the AI is not just focusing on one
indicator and giving a result. It’s looking at multiple
things. The first similar child just had abnormal height
according to the AI but the second child has oedema
and is abnormal by weight. So it’s classified as medium.
If there were more indicators in red (a feature that con-
tributes to the malnutrition prediction), it would have
been classified into severely malnourished.“

4.2 Impact of Explorable Explanations on AI
Contestability, Trust, and Confidence

4.2.1 Enhanced Contestability Explorable explanations not only
enabled AWWs to build intuitions about the AI prediction but also
enhanced their ability to contest AI predictions when they per-
ceived that it made mistakes. When AI prediction differed from
AWWs’ assessment of malnutrition (via inspecting the doll), some
AWWs changed their assessment to match the AI prediction, either
providing limited justification as to why or expressing a bias to-
wards the AI system. AWWs who showed these biases would often
liken the AI probe to a medical device such as an X-ray machine
and assumed that the AI system has to be “right.” Additionally,
AWWs expressed optimism about technological advancements as a
justification for their high levels of trust in them. In such cases, the
AWWs provided fairly coarse explanations of how the AI prediction
came to be and why it was more accurate.

After interacting with the explorable explanations, we witnessed
a shift in AWWs’ explanations and attitudes. In particular, they were
able to communicate more granular and precise information about
the underlying functionality of the predictive system and contest
AI predictions when they became aware of the specific attributes
the AI model took into account to arrive at a prediction. Certain
design heuristics, such as the Edit Measurements Section, elicited
more detailed and accurate responses regarding the prototype’s
functionality. For example, P26 initially agreed with the AI predic-
tion. However, after interacting with the explorable explanations
and witnessing the prediction classifications change when modify-
ing the height and weight measurements in the Edit Measurements
Section, she said:

“This should have at least been in medium malnutri-
tion because there are babies who can be malnourished
despite having normal weight and height. If this child
still has oedema in its feet, then there is some form of
malnutrition. This child is probably anemic.”

Other participants made more pronounced corrections after in-
teracting with the explorable explanations. For example, P24 ini-
tially blamed herself for the incongruity between her assessment
and the AI’s prediction, stating: “I think there is a difference in my
and AI’s assessment but I’m getting old now. How can a computer be
wrong? It’s more likely that I am wrong.” However, after interacting
with the explorable explanations, her assumptions began to change.
For example, she found it odd that the AI model classified the three
week old baby as “normal” at 48 cm, as although newborns are
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typically born at 48 cm or longer, they tend to grow by a few more
centimeters in the following weeks. To inspect this further, she
increased the child’s (doll) height from 48 centimeters to 50 cen-
timeters and noticed that the prediction was still “normal”, as she
had expected. However, her skepticism grew when the prediction
persisted as “normal” even after increasing the height further to 52
centimeters, a point where she expected a classification of “medium
malnourishment”. She became skeptical of AI’s veracity and at one
point, mentioned that she felt the prediction was not accurate given
the updated measurement. When interacting with the Feature In-
formation Modals, she felt that the weight predicted by AI should
have been higher given the child’s age. Later in the interview, she
dismissed the AI’s prediction stating:

“This AI thing just predicts and does not actually mea-
sure the baby. Although the height and weight [infor-
mational] modals indicate a normal baby, the weight
should have been more than 2.4 kilograms, unlike what
the AI shows, since the child grows rapidly in the first
few weeks.”

4.2.2 Increased AI Skepticism We found that when AWWs’ assess-
ments differed from the AI prediction, many continued to believe
in their own judgments. This was primarily a result of AWWs’
skepticism in the probe’s ability to make accurate predictions based
solely on a photograph. AWWs expressed that the prototype was
not holistically evaluating the child and that it was lacking an empir-
ical analysis. These perceptions were reinforced when engagement
with explorable explanations improved AWWs’ understanding of
the inner workings of the AI model. P18 elaborated:

“I’d go with what I see in reality. Pictures lose details
and can’t observe everything we can with our own eyes.
Imagine I have some form of disability in the legs, my
saree will completely hide that in the photograph. So
we need to observe how a child is walking or whether
it’s playing. If the tool is just looking at the photo then
it can’t capture a child’s behavior.”

After engaging with explorable explanations, some AWWs, such
as P25, reasoned that the application was focusing only on certain
features such as weight and height. She emphasized that the AI
needed to take into account other factors, such as behavioral in-
dicators, diet, and the child’s healthcare history to determine the
nutritional status. While they saw the utility of the application,
given the high-stakes nature of the task, AWWs such as P25 did
not want to “blindly believe” the AI system and instead preferred
to confirm the child’s nutritional status via analog methods.

We also found that participants’ previous experiences with other
digital technologies both in and outside of work seemed to have
ingrained the idea that technologies and by proxy AI were not
omniscient and thus could make mistakes. For example, AWWs
referenced the Poshan Calculator mobile application [22] they cur-
rently use, which allows AWWs to input the weight and height of a
child and receive the child’s corresponding nutritional status. P20
made connections between the prototype and Poshan Calculator
and said:

“But is it necessary [true] that the app will always be
right? For example, in my experience, the Poshan Cal-
culator app sometimes gives results that do not match
the growth charts or our own assessment on looking at
the baby.”

These findings align with the work of Schmidt et al. [114], which
shows that providing detailed explanations can affect users’ trust in
AI, either because users find the explanations confusing or because
the explanations have developed capabilities to critically contest the
system. While our findings indicate that explorable explanations
did help AWWs develop more precise contestability, some AWWs
might be expressing skepticism because of their confusion about
inner workings of the AI system as opposed to building a deeper
AI understanding.

4.2.3 Impact on the Understanding of AI Model Confidence While
some AWWs loosely understood the concept of ML model confi-
dence, most were confused by what the designs were trying to
communicate. The explorable explanations had little impact on im-
proving AWWs’ understanding of confidence. Rather, we observed
that the confidence slider seemed to complicate their understand-
ing of AI. In general, participants understood that changing the
child’s measurements could have an effect on model confidence but
were unable to grasp what exactly the confidence slider element
represented.

AWWs frequently misinterpreted confidence as representing the
level of severity of malnutrition. For example, participants would
alter data in the Edit Measurements Section and expect the confi-
dence slider to change in accordance with their perceptions of the
severity levels of child malnutrition. When the prediction did not
reflect their expectation, AWWs expressed confusion. On occasion,
the opposite occurred, and the confidence slider would move in
a direction that AWWs expected. This unfortunately reinforced
AWWs’ misunderstanding until they played more with the data and
noticed that model confidence was not behaving as they expected.
Occasionally, a few AWWs seemed to understand the concept of
the model confidence slider. P20 mentioned:

“Since it’s taking a guess, maybe the percentage tells
us how correct their guess is? But I don’t understand
how one can tell the correctness of one’s guess without
knowing the answer.”

The difficulties in understanding model confidence stemmed
from AWWs’ experiences with other digital technologies. For ex-
ample, in the Poshan Calculator application , nutritional status
information is communicated using a numerical measure to indi-
cate severity. As a result, when AWWs saw numerical values that
describe confidence, they assumed that the values represent the
severity of malnutrition. We found it difficult to shift AWWs’ in-
ferences away from these anchoring biases [90]. These findings
align with the work of Dogruel [37], who showed that people tend
to form analogies based on similar domains to explain unfamiliar
phenomena.
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4.3 Explorable Explanations Are Learning and
Augmentation Tools

4.3.1 Augmenting AWWs’ Domain Learning AWWs viewed the
explorable explanations as an educational tool that could help them
learn more about child malnutrition. The interactive and didactic
components of the probe nurtured AWWs’ curiosity. For example,
many AWWs toggled back-and-forth, interacting with the visual
affordances in an intuition grounding process, which helped build
understanding about the AImodel features. AWWs felt that learning
about the contributing features and their measurement ranges was
knowledge that they could apply when in the field. This added
information could help them better understand the indicators to
look for in a child and the compounding factors that could lead to
child malnutrition. For example, P28 elaborated:

“If the app comes with these buttons then they would be
very useful not just to understand the predictions but
also these charts will help us to know the right ranges
for all parts of the body. These charts will help us better
understand the predictions as we get to know the right
ranges.”

The value of explorable explanations was especially noticeable
when participants interacted with the Feature Information Modals
for measurements such as head circumference, which was a metric
they currently do not evaluate under their existing protocol. AWWs
expressed how they thought these explorable explanations could
provide them with additional contextual information that would
help them perform more holistic and comprehensive assessments
in the field. Many AWWs felt that AI could play a much larger role
in cases that are complicated and are close to different classification
boundaries of malnutrition. P28 elaborated:

“A lot of AWWs do not know what to do at border mea-
surements. I think this section can tell us where a baby
should be classified if the measurements are on the bor-
der of two categories.”

4.3.2 Augmenting AWWs’ Capabilities AWWs felt that an AI tool
accompanied with explorable explanations could help them more
effectively diagnose child malnutrition. In particular, AWWs viewed
the explorable explanations as a “sounding board”, which could help
them debug complicated child assessments and provide additional
data points. For instance, P15 thought that the prototype could be
best utilized as an additional verification step:

“It is possible that I could be wrong in taking measure-
ments. For example, it can happen when a baby is not
laid down correctly on the infantometer or a part of its
body is away from the machine. Then the AI can keep
me in check.”

In addition to serving as a sounding board, P20 mentioned that
because explorable explanations displayed all relevant information
on a single screen, it would save her time and help her avoid going
through multiple physical registers to collate information. P20 also
felt that the explanations could act as an effective presentation tool
in meetings to help describe to others how the AWWs classified
malnutrition. Other AWWs viewed the explorable explanations as
a valuable communication tool for interfacing with parents. They

felt that the explanations would allow AWWs to more concretely
and precisely demonstrate areas of improvement to parents re-
garding their children’s nutrition and help them make specific,
action-oriented recommendations. Lastly, given the space and time
constraints within which AWWs work, some AWWs felt that AI
could prove especially useful in automating laborious and rote tasks
and that explanations could help AWWs to keep AI in check in case
these systems make mistakes.

Despite the potential of augmenting AWWs’ capabilities, many
AWWs continued to look at AI with skepticism due to engage-
ment with explorable explanations, which demystified AI for them.
They also highlighted how the sociopolitical complexities of their
workplaces eventually determines whether and how such tools
and explanations are integrated into their workflows. Given their
precarious and extremely hierarchical work environments, some
participants felt that they would have to suppress their critical
opinions on AI in favor of “following orders” if the prototype was
integrated into their workflows.

5 Discussion
Given the proliferation of AI applications and organizations’ de-
sire to leverage these predictive tools to tackle the world’s most
pressing societal issues (such as child malnutrition), it is critical to
understand how to explain AI technologies to key stakeholders. We
investigated whether explorable explanations—human-centered,
interactive visual heuristics and written explanations—helped im-
prove XAI methods for non-AI experts with low digital literacy such
as AWWs. In this section, we reflect on our findings and discuss
implications and considerations for future work.

5.1 Re-imagining XAI as Play
Current AI technologies are largely designed by a few people in
the West who decide what values these tools will inherit and where
they will be used. AWWs are often viewed as low-skilled laborers
by AI interventionists who are generally unaware of the enormous
amount of invisible labor done by frontline health workers [83, 126].
AI designers and developers frequently do not take into account
stakeholders’ values and viewpoints such as AWWs, who not only
lack the power and legitimacy to influence the AI system’s design
but are also forced to integrate these tools into their workflows [81].
Such interventions reduce AWWs from being domain experts to
data collectors, diminish their agency, and make their labor more
scrutinized and measured by narrow success metrics.

Chirumamilla and Pal [26] warn against “developmental optic”—
a narrative in ICTD specifically and Global Development more
broadly, which envisions the primary audience such as AWWs, as
perpetually “backward” and in need of “improvement”. The devel-
opmental optic not only undermines the voice of communities in
the creation and appropriation of initiatives, it also forces success
to be measured through a static set of narrow goals that focus on
improving “productivity and accuracy” rather than “agency”. Chiru-
mamilla and Pal [26] advocate for a re-imagination of research to
center “non-productive” activities, such as having fun, to counter
developmental narratives.

We see parallels between our research and the contentions out-
lined above. Currently, AWWs, who are generally unfamiliar with
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AI-driven technologies, often experience these technological inter-
ventions imposed upon them without consultation and without
avenues for stakeholder engagement [26, 81]. Moreover, there is lit-
tle work being done to make AI understandable to novice users like
AWWs, who are nevertheless expected to operate AI technologies
safely within the world’s poorest and most marginalized commu-
nities [92, 93]. In our work, we saw how explorable explanations
enabled AWWs to organically explore the inner workings of AI and
thereby improve their AI understanding. In particular, we observed
how the notion of “play”, a critical component of the explorable
explanations, helped AWWs better articulate their thoughts regard-
ing the AI model’s functionality. For example, we saw how toggling
measurements in the Edit Measurements Section allowed AWWs to
reflect on the predictive changes in real-time and helped them build
intuitions about AI based on these playful experiences.

We also found that participants expressed epistemic curiosity
about the AI system [72, 86]. Epistemic curiosity is the “desire for
knowledge that motivates individuals to learn new ideas, eliminate
information gaps, and solve intellectual problems” [72]. As noted in
Section 4.3, AWWs viewed the explorable explanations as a learn-
ing heuristic and tool to augment their existing workflows. The
prototype’s interactivity and the didactics seemed to nurture partic-
ipants’ intellectual curiosity. They encouraged a more active form
of learning, which not only empowered them but also promoted
a sense of agency and control amongst AWWs. We observed that
because the data in the explorable explanations could be mutated,
participants subsequently viewed the tool in a less prescriptive
manner. Through engagement with essential design elements of
explorable explanations, AWWs were also able to substantiate the
relationships between the child’s photo, measurements, and the
prototype’s malnutrition classification.

While more work is necessary to state whether explorable ex-
planations can help participants appropriately calibrate trust in
AI-driven systems [136], similar observations regarding deliber-
ative thinking have been made by Buçinca et al. [21]. In particu-
lar, Buçinca et al. [21] found that cognitive forcing functions, which
are design elements and interventions that elicit thinking at the
decision making time have been shown to reduce overreliance on
AI. Similar to cognitive forcing functions, explorable explanations
also add friction to the AI prediction process and require AWWs
to actively engage with the prediction explanation — engaging the
System 2 (slow and deliberative) thinking process [58]. As a result,
explorable explanations extend the findings of Buçinca et al. [21],
which state that “explainable AI researchers should ensure that people
will exert effort to attend to those explanations”.

The design elements that best resonated with AWWs were the
Feature Information Modals (Figure 1a), Feature Importance Section
(Figure 2a), Edit Measurements Section (Figure 1b), and Comparison
Screens (Figure 2b). In general, we found these designs were suc-
cessful because they surfaced information that was user-centered,
appropriate, contextual, and concise. For example, while the design
probe introduced new concepts to AWWs, many of the interactions,
iconography, and colors referenced in explorable explanations were
derived from best practices in designing UIs for digitally novice
users [119] and contained existing design language from mobile
applications and analog artifacts that were familiar to participants.
For example, we designed measurement charts to accompany the

Feature Information Modals (Figure 1a), which referenced designs
from the current child weight and height charts used by AWWs. As
a result, adopting a culturally responsive design enabled AWWs to
absorb and reflect on new information as well as increased their
familiarly and comfort when interacting with explorable explana-
tions.

Given these findings, we advocate for the aforementioned design
considerations to be incorporated into new XAI research focusing
on users, such as AWWs, who possess little to no AI knowledge
and low levels of digital skills. We underscore the importance of
developing XAI methods that focus on building approachable and
culturally responsive designs, recognize and celebrate participants’
domain expertise, and in general advocate for methods that encour-
age and facilitate stakeholder curiosity.

5.2 Explainability is Only A Part of the Puzzle
Our findings also show that AI explainability is only a part of the
puzzle and several other factors determine the integration of AI
technologies into frontline healthcare workflows.

5.2.1 Power Differentials As discussed in 4.3.2, several AWWs felt
forced to use AI technologies by their supervisors. AWWs lacked
agency and negotiating power to dictate in what areas and how
these technologies can support their needs. AWWs work under
precarious conditions in environments with limited resources and
opportunities [62, 84, 112]. The little compensation that AWWs
receive is tied to their work performance, which remains under con-
stant surveillance by the Indian government [109]. Integrating AI
technologies into an environment already under high surveillance
and that promotes outcome-based remuneration will only further
reinforce or exacerbate these existing power imbalances [62, 109].
This is especially true when the AI technologies do not account
for the needs of AWWs who are expected to become AI workers,
and when AWWs do not have the necessary knowledge to under-
stand the inner workings of AI. We clearly witnessed these power
dynamics at play in our study. For example, many AWWs initially
expressed a reluctance to outwardly object to the AI’s decision,
despite internally disagreeing with the prediction, until they inter-
acted with explorable explanations which gave them the language
to express hesitations and contest AI decisions.

Researchers should consider the domain contexts in which XAI
systems are designed to operate and the stakeholders they are
expected to support. Although the explorable explanations im-
proved AWWs’ AI understanding and enhanced AI contestability,
we strongly believe that, given the current sociopolitical environ-
ment, the prototype would be severely limited in its efficacy as a
result of the power disparities [109]. Any deployments of AI tech-
nologies need to take multi-pronged and holistic approaches to
developing responsible technologies. XAI is only one piece of the
puzzle and not a panacea.

5.2.2 Infrastructural Challenges AWWs are one of the most acces-
sible arms of the government in rural India. Subsequently, they
often receive tasks beyond their expected duties [109]. One of these
tasks has been the increasing data work from new digital technolo-
gies that are integrated into their workflows to help them diagnose
diseases and manage patient care. Many of these applications exist
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in silos, which exacerbate things further and result in a fractured
and disparate system of work. For example, AWWs in our study
not only had to use new digital applications such as the Poshan Cal-
culator to identify child malnutrition but often had to keep manual
records in parallel, doubling their workloads.

AWWs frequently contend with infrastructural challenges, such
as poor Internet connectivity and power cuts, which reduced their
willingness to use digital technologies for work. AWWs also high-
lighted the lack of compensation and their invisible labor that goes
unrecognized by administrators. Some AWWs ended up paying
for occupation-related expenses out-of-pocket, including cellular
phones that are required for their jobs. Many AWWs underscored
the fact that, in addition to having to pay for these work-related
devices, they also received little to no technological assistance
or support. Instead, they relied on family members to help with
tech-related hurdles. These findings suggest that integrating a new
application into their workflows, even if it makes AI understand-
able, may only add to their troubles. As other scholars have ob-
served, these types of data work become ends unto themselves and
as a result, often flatten the human work of care into a few data
points [96, 109, 126].

5.2.3 Lack of Training and On-the-Ground Support One consistent
theme that we observed was the requests from AWWs for training
on the prototype. While explorable explanations shifted their AI-
related folk theories and improved their AI understanding, many
AWWs continued to express a strong need for training to improve
their AI literacy. AWWs also requested that a support infrastructure
be provided so that they could have resources for technological
assistance and/or maintenance. Without developing these local
capabilities, AWWs expressed that an AI intervention is doomed to
fail, regardless of how explainable it is.

In addition to training and scaffolding structures, AWWs also
emphasized the need for AI technologies to be accepted by local
communities. They highlighted the importance of engaging with
and educating guardians and the community at large about the
prototype. Given the years that AWWs have spent building com-
munity trust, they felt that AI technologies in frontline healthcare
must be robust and understandable to communities in order to
prevent the erosion of trust due to AI malfunctions. They called for
awareness programs, posters, and other analog artifacts to start a
conversation and increase understanding of AI tools amongst the
communities they serve. Taken together, these findings highlight:
(1) the importance of a more holistic conception of AI explainability
that goes beyond cognition and literacy to consider aspects such
as user training and community engagement as core tenants of
explainability efforts and, (2) the need to consider AI technologies
as “sociotechnical” tools that are cognizant of the sociocultural,
sociopolitical, and socioeconomic realities of the context within
which they are integrated.

5.3 Limitations and Future Work
Our work has some limitations. First, while Figma is an excellent
design tool for interactive prototyping, the probe that we built
supported only limited interactions. Future work should explore
the building of a feature-rich, fully functional prototype that would
allow AWWs to use the application in a more natural way that

better mimics their daily processes. Furthermore, having a fully
interactive prototype may encourage greater exploration and “play”,
which we found to be critical in improving AI understanding for
AWWs.

Next, given the qualitative nature of this research our findings
lack generalizability and more work is needed to evaluate quan-
titative results in support of our findings. In addition to building
a fully functional prototype with explorable explanations, future
research efforts should focus on conducting controlled experiments
to examine the effectiveness of explorable explanations as well as
the specific features of explorable explanations that increase user
agency, help calibrate trust, and improve AI understanding. One
such example could involve conducting a controlled experiment
where one group of AWWs would receive the AI-driven malnu-
trition application without explorable explanations (control) and
another group would receive the application with explorable expla-
nations (experiment). We would subsequently evaluate both groups
regarding empirical task performance as well as on other dimen-
sions such as calibrate trust, system understanding, and system
confusion, to name a few.

During our study, we consistently observed that AWWs wanted
more time to interact with the design probe. A remote, longitudi-
nal study administered in collaboration with a local partner might
result in findings that are less influenced by observer effects and
participant response bias [125]. Furthermore, a long-term deploy-
ment of explorable explanations and controlled evaluation of an
AI-driven application that is deployed ethically, responsibly, and
safely might also address the limitations aforementioned in Sec-
tion 3.6 regarding the researcher-participant gender and power
differences. Research participants could use the prototype in their
daily tasks and the research team could capture analytics and other
inputs from the device. This longitudinal study would also necessi-
tate building a mobile prototype, which would allow us to test our
designs on a smartphone (a device AWWs are more familiar with)
as opposed to an iPad. These studies, in concert with our qualitative
findings, would generate rich data on the potential utility of ex-
plorable explanations in improving AI understanding for digitally
novice AI workers such as AWWs in the Global South.

Finally, future work should also explore the use of participatory
AI methods [16]. These methods would enable AWWs to actively
engage in the design process and articulate their needs and prefer-
ences regarding XAI, in order to safely operate these tools, which
are being increasingly integrated into their workflows. Not only
would this approach help design culturally appropriate interven-
tions that enhance the overall utility of AI for AWWs, it would
also enable XAI designers and developers to better understand how
sociopolitical, socioeconomic, and sociocultural forces impact AI
adoption and understanding.

6 Conclusion
This work examines the effectiveness of explorable explanations at
enhancing the AI understanding of AWWs in rural India. We con-
ducted interviews with AWWs who engaged with a design probe to
predict child malnutrition. Through the probe, which incorporated
AI predictions accompanied by explorable explanations, we found
strong evidence that explorable explanations shape AI-related folk
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theories of AWWs and improve their understanding of AI. While
explorable explanations increased their skepticism in AI and made
AWWs more agentic in contesting the AI prediction, they faced
challenges grasping the design elements and meaning behind AI
confidence. AWWs engaged in “play” when interacting with ex-
plorable explanations and perceived the explanations as having
high utility in improving learning outcomes and augmenting their
capabilities. Finally, we discussed the need for a more holistic con-
ception of AI explainability that goes beyond cognition and literacy,
and takes into account power differentials, infrastructural chal-
lenges, and the scaffolding of structures to aid in integration and
adoption of AI technologies into frontline healthcare workflows.
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A DESIGN PROBE
This appendix contains the Hindi versions of the design probe we
displayed in the Section 3 in Figure 1, Figure 2, and Figure 4.
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http://worrydream.com/#!/ExplorableExplanations
https://doi.org/10.1145/2470654.2466473
https://doi.org/10.1145/2470654.2466473
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(a) Explorable Explanations Feature Information Modal. (b) Explorable Explanations Edit Measurements Section.

Figure 5: The Hindi versions of (a) the Feature Information Modal and (b) the Edit Measurements Section.

(a) Explorable Explanations Feature Importance Section. (b) Explorable Explanations Comparison Screens.

Figure 6: The Hindi versions of (a) the Feature Importance Section and (b) the Comparison Screens.
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Figure 7: The Hindi version of the AI prediction screen in the prototype.
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